Aluminum Caprate
Aluminum Palmitate
P-Aminobenzoic acid
Benzyl Acetoacetate
Benzyl Benzoate
Benzyl Butyrate
Benzyl Cinnamate
Benzyl Formate
Calcium Ascorbate
Calcium Bromate
Calcium Caprate
Calcium Caprylate
Calcium Carbonate
Calcium Citrate
Calcium Diglutamate
Calcium Gluconate
Calcium Lactate
Calcium Myristate
Calcium Palmitate
Calcium Pantothenate
Carboxymethyl cellulose
Cellulose Acetate
Citronellyl Acetates
Citronellyl Butyrate
Diethyl Malate
Diethyl Tartrate
Disodium Citriate
Erythorbic Acid
Ethyl Acetate
Neryl Acetate
Neryl Butyrate
Neryl Formate
Ethyl Vanillin
Ethtyl Vanillin Isobutyrate
Ethyl Vanillin Beta-D-Glucopyranoside
Ethyl Vanillin Propyleneglycol Acetal
Ferric Citrate
Ferrous Ascorbate
Ferrous Citrate
Ferrous Fumarate
Ferrous Lactate
Ferrous Gluconate
Geranyl Formate
Lauric Acid
Lauryl Acetate
Lauryl Alcohol
Linalyl Acetate
Linalyl Anthranilate
Linalyl Formate
Magnesium Caprate
Magnesium Caprylate
Magnesium Fumarate
Manganese Citrate
Musk, Ketone
Myristic Acid
Sodium Ascorbate
Sodium Benzoate
Sodium Bicarbonate
Sodium Formate
Sodium Fumarate
Sodium Humate
Sodium Lactate
Sodium Tartrate
Salicylic Acid
Potassium Sorbate
Potassium Chloride
Potassium Caseinate
Potassium Carbonate
Potassium Caprylate
Potassium Caprate
Potassium Bromate
Potassium Borate
Potassium Bisulfite


Calcium Sorbate

(CAS: 7492-55-9)

Calcium sorbate is the calcium salt of sorbic acid .

Chemical Formula: CaC12H14O4

Formula Weight: 262.32

Systematic name: "calcium ( E , E )-hexa-2,4-dienoate".

Description: Fine white crystalline powder not showing any change in colour after heating at 105 o for 90 min

Melting point: 132 - 135íŠ

Method of test: Weigh to the nearest mg, 0.25 g of the dried sample. Dissolve in 35 ml of glacial acetic acid and 4 ml of acetic anhydride in a 250-ml glass-stoppered flask, warming to effect solution. Cool to room temperature, add 2 drops of crystal violet TS and titrate with 0.1 N perchloric acid in glacial acetic acid to a blue-green end point which persists for at least 30 sec. Perform a blank determination and make any necessary correction. Each ml of 0.1 N perchloric acid is equivalent to 13.12 mg of C12H14CaO4.

Because of their physiological inertness, their effectiveness even in the weakly acid pH range and their neutral taste, sorbic acid and its salts have become the leading preservatives in the food sector throughout the world over the past 30 years. The most commonly used products are sorbic acid itself (E200) and potassium sorbate (E202). In many countries sodium sorbate (E201) and calcium sorbate (E203) are also permitted. Sorbic acid is sparingly soluble in water, sodium sorbate has better solubility, and potassium sorbate is very freely soluble and can be used to produce 50% stock solutions. The soluble sorbates are preferred when it is desired to use the preservative in liquid form, or when aqueous systems are to be preserved. Sodium sorbate in solid form is unstable and very rapidly undergoes oxidation on exposure to atmospheric oxygen. It is therefore not produced on the industrial scale. Aqueous solutions of sodium sorbate remain stable for some time. Calcium sorbate is used in the manufacture of fungistatic wrappers because it is highly stable to oxidation, but this use is very limited. Sorbic acid and sorbates can be directly added into the product. The products can be dipped or sprayed with aqueous solutions of sorbates. Dusting of food with dry sorbic acid is also possible but less recommended because sorbic acid irritates the skin and mucous membranes. Sorbic acid and particularly calcium sorbate can be used as active substances in fungistatic wrappers. A general survey of the numerous uses of sorbic acid in the food sector will be given. Some fields of application will be discussed that are either unimportant or not permitted in the U.K.